
Runtime FPGA Partial Reconffiguration

Eric J. McDonald
The Aerospace Corporation

ABSTRACT

Field programmable gate arrays (FPGAs) are now
being integrated into many space-based applications.
FPGAs are being used as replacements for
application-specific integrated circuits (ASICs) without
considering new options offered by their reprogrammnable
nature. Runtime partial reconfiguration can potentially
reduce the number of devices or the device size, thereby
reducing both size and power consumption. A system that
requires either transmit or receive capabilities at any
given time, but not both, can switch between the two
modes in a fraction of a second using partial
reconfiguration. The current approach requires that both
modes be implemented simultaneously, thereby wasting
power and requiring more resources. The idea of
adaptively allocating limited FPGA resources is also
applicable to hardware-accelerated, software-defimed
radios. The hardware accelerators are loaded into
FPGA(s) as they are needed. Partial reconfiguration
allows swapping of accelerators much faster than is
possible with current methods, and with less disruption to
other processes running in parallel. This technology
significantly reduces power consumption critical for space
and portable ground-based applications of FPGA
technology. A software-defined radio was designed with a
reprogrammable forward error correction (FEC) block
supporting multiple FEC codes to demonstrate one
practical use of this technology. This provides an
overview of the design flow necessary for partial
reconfiguration and comments on the additional
overhead necessary for creating such a design. In
addition, limitations to this emerging technology are
outlined 1,2.

'1-4244-1488-1/08/$25.00 Q 2008 MEEE.

'IEEE AC paper #1443, Version 4, Updated December 3.,2007.

Author's Current Address:
The Aerospace Corporation, PO Box 92957, Los Angeles, CA 90009-2957, USA.

Based on a presentation at the 2008 Big Sky Conference.

0885/8985/08/ USA $25.00 Q 2008 IEEE

CLl~s

and

DSP48s

BRAMs
and

FIF70s

Fig. 1. Layout of a small Virtex-4 FPGA (LX15)

INTRODUCTION

Field programmable gate arrays (EPOAs) are quickly
becoming the usual targeted technology for many
development efforts due to their low cost and rapid
development time. Advances in digital technology provide
the means to make each generation of FPGAs significantly
more attractive and useful than their predecessors. Each
generation introduces additional benefits and utilities besides

10 IEEE A&E SYSTEMS MAGAZINE, JULY 200810

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore. Restrictions apply.

Table 1. Summary of Configuration Options

Port Bus Max. uSec/Fraine

Serial 1 bit 100 MHz 13.12

JTAG 1 bit 66 MHz 19.88

SelectMap 8 bits 100 MHz 1.64

ICAP 8 bits3 100 MHz 1.64

the expected larger size and faster speed. Exploring suitable
applications for the latest available products must be a
continuous endeavor because their performance and abilities
improve significantly with each new product release.
Additionally, because each vendor's products have
characteristics and utilities that are not necessarily shared by
the competition and are often unique, evaluating a specific
vendor's product requires significant effort and prevents a
straightforward side-by-side comparison. One advancement
of significant importance is the ability to reconfigure a
portion of an FPGA. This ability is referred to as partial
reconfiguration (PR). The focus herein is to evaluate runtime
partial reconfiguration in Xilinx's Virtex-4 FPGAs as it
applies to the field of software-defined radio.

To date, at least three vendors provide products that offer
some degree of partial reconfiguration (Xilinx [1], Atmel [2],
Lattice [3]). The real advantage of partial reconfiguration
occurs when the reconfiguration takes place dynamically
during runtime. Runtime partial reconfiguration, or dynamic
reconfiguration, allows the reconfiguration of a portion of an
FPGA while the remainder continues to run continuously
without losing any data. Because partial reconfiguration is
coupled very closely to the underlying framework of the
FPGA itself, each vendor's FPGAs will have significant
differences that may appear as disadvantages or advantages
for a given application. Previous work has been done that
presents a summnary of the available FPGAs that offer partial
reconfiguration [4]. Due to the rapid advancement of the
field, the information contained in [4] from 2003 has already
become outdated. For example, [4] summarizes the available
options for the original Virtex family (the XCV 1000,
specifically), which was upgraded in 2002 with the Virtex-II
family, which was again upgraded in 2005 with the Virtex-4
family, and has presently been upgraded with the latest
Xilinx family, Virtex-5. Each release includes improvements
to the existing products and to partial reconfiguration
specifically. (This paper explores potential uses of the
Virtex-4 devices and makes no claims as to the abilities of
future devices from Xilinx or other vendors.) An in-depth

Table 1. ExampleConfiguration Sizes and Times to
Configure with JTAG and SelectMAPIICAP

Design Framnes4 JTAG SelectMap/
ICAP

Turbo 154 3.061 ins 0.252 ins
Encoder

Turbo 4092 81.34 ins 6.710 ins
Decoder

SS 5610 111 ins 9.2 ins
Acquisition

FFT 4752 94.47 ins 7.79 ins
(8192 bins)

look at partial reconfiguration can be found in [5], which
includes a low-level description of partial reconfiguration in
Xilinx's Virtex-JI devices as well as an overview of some of
the available tools developed to assist with partial
reconfiguration.

This paper is organized as follows: the next section gives a
very brief overview of software-defined radio; followed by a
closer look at partial reconfiguration; next how partial
reconfiguration fits with software-defined radio, and finally,
the concluding remarks.

SOFTWARE-DEFINED RADIO

Wireless communication abilities are becoming ubiquitous
in the latest generation of portable electronics. Besides the
large variety of cellular communication standards, cell
phones often come equipped with the capability to connect to
wireless ear buds. The latest generations of cameras are even
starting to become equipped with various wireless
communication options to transfer pictures to and from select
devices. All the while, satellites are being launched that
employ different modulations and methods for forward error
correction. In order to communicate with a wide array of
devices, an overwhelming number of communication
standards must be available at any given time. Hardware
designs that attempt to provide compatibility with the current
standards, if even possible, will likely become obsolete
shortly after their release. Software-defined radios (SDRs),
where the communication parameters are defined at runtime
by software, have become increasingly attractive. A
collection of readings covering many of the important topics
relating to SDRs can be found in [6]. Advancements in
FPGAs have made the realization of such SDRs possible [7].
A modem software-defined radio would ideally possess a
multitude of function blocks that are available at any given
time and must be able to handle the bandwidth of the

'Configuration of a framne requires 41 32-bit words of configuration data.

IEEE A&E SYSTEMS MAGAZINE, JULY 2008 1

'The ICAP has a 32-bit mode but is believed to function only in the 8-bit mode at the
present time.

I I

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore. Restrictions apply.

required channel. Creating a design that contains all possible
options at the same time is not feasible. An FPGA's
reconfigurable nature, however, provides a good foundation
for creating a modular design that can load the desired
functions as needed. In particular, reconfiguring the
functionality of a specific block while the remainder of the
design continues to function provides a unique opportunity to
create an extremely flexible and compact design.

PARTIAL RECONFIGURATION IN THE VIRTEX-4

Before exploring the potential uses of partial
reconfiguration, it is important to be aware of the current
performance and limitations of the targeted device. Because
of the widespread use of Xilinx's FPGAs, the Virtex-4 family
was chosen as the example FPGA. Of major importance are
reconfiguration speeds and methods, design hierarchy
limitations relating to PR modules (PRMs) and the number of
allowed PR regions, and software support for generating PR
designs.

In order to discuss some of the specifics related to PR, it is
important to understand the general structure of the Xilinx
FPGA and how it is configured. Each device will have
variations to the size and location of various elements, but the
overall structure of a Virtex-4 FPGA can be seen in Figure 1,
where CLBs are configurable logic blocks, BRAMs are block
random access memories, FIFOs are first-in first-out buffers,
DCMs are digital clock managers, DSP48s are Xilinx's
digital signal processing units, and IOBs are input-output
buffers. The FPGA is configured by writing bits to its
configuration memory (CM). The configuration data is
organized into frames that target specific areas of the FPGA
through frame addresses. When using PR, the partial
bitstreams will contain configuration data for a whole frame
if any portion of that frame is to be reconfigured.

Reconfiguration Speed
Reconfiguration times will be highly dependent upon the

size and organization of the PR region(s). The Virtex-4's
predecessor, the Virtex-JI, allows for PR of whole columns
only, which potentially requires partial bitstreams to be
significantly larger than necessary. Allowing for
arbitrarily-shaped PR regions was a great improvement in the
Virtex-4 design. Because design size will impact the
reconfiguration time, the metric of uSec/Frame is used when
calculating the reconfiguration speed.

Frames are composed of 41 32-bit words. The smallest
Virtex-4 device, the LX15, has 3,740 frames, and the largest
device, the FX140, has 41,152 frames [8]. There are four
methods of configuring a device: externally through the serial
configuration port, the JTAG (Boundary Scan) port, or the
SelectMap port, or internally (using an embedded
microcontroller or state machine) through the intemnal
configuration access port (ICAP). Each of these methods will
have applications where they are the most desirable. Because
reconfiguration using an embedded microcontroller provides
a very flexible and powerful platform for PR designs, the

next subsection will present more details relating to this
topic. A summary of the configuration speeds is shown in
Table 1.

To give an idea of approximate configuration times for
various PR applications, the estimated sizes of some common
blocks and their configuration times are included in Table 2.
Note that a certain amount of overhead is involved in setting
up the addressing for PR and has been roughly estimated by
the author as approximately 10% and has been ignored in all
calculations. Also, multiple frames with the same
configuration can be written at the same time, thereby
shortening the bitstream.

The values in Table 2 were based on estimates in Xilinx's
PlanAhead software when targeting an approximate PR
region slice utilization of 90%. Actual sizes and times will be
dependent upon design implementation, target device, region
utilization, and resource location. For the examples in Table

Fig. 2. PR design using embedded microcontroller

2, the turbo encoder and decoder were purchased cores from
Turbo Concepts [9], the spread-spectrum (SS) acquisition
block was a custom design capable of checking 300 chip
offsets and 10 frequency offsets in parallel with variable
correlation times up to 100,000 chips, and the fast Fourier
transform (FFT) was a Xilinx core with 8192 bins and 12-bit
inputs. (It is expected that the configuration port is the
bottleneck in determining the reconfiguration times.)

Reconfiguration Using an Embedded Microcontroller
In addition to supporting an embedded soft processor core

(Xilinx's MicroBlaze) in all Virtex-il and later FPGAs,
Xilinx also provides several FPGA lines that include
embedded IBM PowerPC hard processor cores. The ability of
these cores to process C/C++ code makes them an extremely
flexible option for reconfigurable designs. By controlling
reconfiguration using a processor that is embedded within the
FPGA itself, the need to interface with an external controller
(such as a PC) can be eliminated, allowing for autonomous
operation (depending upon the embedded software design
and desired functionality).

12 IEEE A&E SYSTEMS MAGAZINE, JULY 200812

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore. Restrictions apply.

TOP MODULE

a) Hierarchical view before PR partitioning.

Fig. 3. Example design showing two PR regions

One potential embedded system design is shown in
Figure 2.

The example design shown in Figure 2 includes C/C++
code that determines when reconfiguration is necessary.
When needed, the microprocessor loads the desired
configuration data from external memory and reconfigures
the PR region through the ICAP primitive. Reconfiguration
in this example is expected to be triggered by an event on the
FPGA itself, such as acquisition of a PN code, loss of signal
lock, detection of an interfering signal, a set timer, etc., but
could also be triggered by an external interrupt. The external
memory could consist of ROM, Flash memory, or static
RAM that is loaded at start-up or even filled by the FPGA
itself (in the case where the FPGA is configured as a receiver
and receives configuration data as the payload of a
transmission). Xilinx. provides extensive embedded
microprocessor design support, including reconfiguration
support in the form of source code for software functions and
hardware implementation code for the peripheral bus
interface and necessary processes. The embedded
microcontroller can easily be replaced by a custom state
machine that handles the loading of configuration data when
the overhead of an embedded microcontroller is undesirable.

PR Design Hierarchy
Because the flow from the Hardware Description

Language (HDL) to configuration bitstream is extremely
complicated, limitations on design hierarchy exist to assist
the software tools in creating PR designs. The primary
limitation requires that the top-level module contain
submnodules that are either static modules (SMs) or partially
reconfigurable modules (PRMs). All communication (with a
few exceptions for global signals such as clocks) must be
explicitly declared using 8-bit bus macros provided by
Xilinx. The current design flow allows for multiple PRMs in
a single design. An example design with two PRMs is shown
in Figure 3.

The required hierarchy adds a significant amount of effort
when converting an existing static design into one that is

Fig. 4. Transceiver design with turbo coding and
concatenated convolutional + Reed-Solomon Coding

ready for PR. Having all the PRMs at the top level will often
require routing many signals to and from another module
deep within the main static module. For example, a
transceiver with FEC modules embedded deep within both
the transmit and receive portions of the design requires
routing all the necessary signals up and down through the
entire hierarchy in order to have partially reconfigurable FEC
modules. This example is shown in Figure 4, where the
original unpartitioned design is shown in Figure 4A, with the
partitioned design shown in Figure 4B.

PR Software Support
When PR initially became available, there was very little

software support to assist in generating PR designs and
bitstreams. Efforts within the academic community attempted
to ease the burden of designers wishing to employ PR and
accomplished a limited amount of automation [10, 11].
Recently, Xilinx has released an Early Access design flow
for PR that integrates with their sophisticated floor-planner
tool, PlanAhead, and their synthesis tool, ISE. Modifications
are made to the ISE tool, making it valid only for PR designs
such that PlanAhead can call the modified functions in an
automated command-line fashion, hiding the user from many

IEEE A&E SYSTEMS MAGAZINE, JULY 2008 113

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore. Restrictions apply.

of the low-level details that were previously the
responsibility of the user. When determining the size and
location of a PR region, PlanAhead provides statistics on the
required primitives (DSP48s, BRAMs, etc.), the available
resources in the defined area, and statistics on utilization that
greatly help during the floor-planning stage. PlanAhead also
comes with a design-rule checker that assists in correcting
any violations due to placement. While the PR flow's
integration into PlanAhead continues to become more
user-friendly with each release, the present software support
makes PR designs manageable. As PR becomes mainstream,
it is expected that Xilinx and other FPGA vendors will more
fully support this technology through improved tools and
documentation.

SDR AND PARTIAL RECONFIGURATION

Determiining whether PR is appropriate for a given
application depends heavily upon the FPGA family, the
application details, and the application environment.
However, partial reconfiguration (PR) has moved beyond
being an emerging technology where the majority of efforts
have been for research only to a viable option for product
development. As such, one field where it can be applied to
great advantage is software-defined radio.

Simplex Spread-Spectrum Transceiver with FEC
One potential SDR use would be in a simplex transceiver,

where only transmit or receive capabilities are used at any
given time and are never used at the same time. Assuming
that the waveform requires FEC as well as direct-sequence
spread-spectrum (DSSS), the design could be organized as
shown in Figure 5. Two PR regions are declared: one for
either the Tx modulator or the Rx demodulator, one for the
Tx FEC encoder, the Rx DSSS acquisition engine, or the Rx
FEC decoder.

DSSS acquisition typically requires a lot of resources but
is used only during the acquisition phase. Once the spreading
code has been acquired, those resources can be reconfigured
as the FEC decoder while the Rx demodulator continues to
track the spreading code.

Dynamic Bandwidth Resource Allocation Transceiver
Systems employing dynamic bandwidth resource

allocation (DBRA) would benefit substantially from the use
of PR. These systems alter the communication waveform
dynamically to match channel conditions. For instance, if the
signal-to-noise ratio (SNR) drops such that an unacceptable
hit-error rate (HER) occurs, a combination of modulation
type, data rate, or FEC configuration changes may be
performed to decrease the BER. Alternately, if a high SNR is
detected, reconfiguration could be used to increase
throughput while still maintaining the desired BER.

Figure 6 shows one possible scenario with a transceiver
employing DBRA where the Tx waveform changes from
turbo-coded binary phase shift-keying (BPSK) to Gaussian
minimum shift-keying (GMSK) with a concatenated

Fig. 5. Simplex transceiver with
spread-spectrum and FEC

Fig. 6. Dynamic bandwidth resource
allocation transceiver

Channelizer(

FFT

Fig. 7. Cognitive radio receiver

convolutional encoder, followed by Reed-Solomon (RS)
encoding. The Rx waveform switches from turbo-coded
BPSK to 8-ary phase shift-keying (8PSK) to the concatenated
Viterbi and Reed-Solomon decoder.

Cognitive Radio
Another example for the use of PR in SDR applications

comes in the field of cognitive radio (CR). A CR receiver

14 IEEE AESS SYSTEMS MAGAZINE, JULY 200814

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore. Restrictions apply.

Software-
Defined
Radio

on
PC

Funion3Z

ZunionU2
FntonE]

Fast
External
Memory
(-I GB)

Fig. 8. Hardware acceleration of software-defuined radio

must scan the available spectrum using an FFT, locate
energy, create a channel that attempts to match the spectral
shape, perform modulation recognition, and then try to
demodulate. Because the spectrum must always (or at least
very often) be monitored, the FFT module is left as static, but
use of the modulation recognition and demodulator are
mutually exclusive, providing an opportunity to take
advantage of PR. It is expected that switching between
modulation recognition and demodulation will occur often as
the receiver searches the available signals for the correct one.
If reconfiguration could be achieved quickly enough, the FF1'
module could potentially be made reconfigurable as well.
Partitioning for this CR receiver example can be seen in
Figure 7.

Hardware Acceleration (Future Work)
While much research has been done in the field of

hardware acceleration, including the application of PR to this
field, it is still worth illustrating how PR can be applied to
this problem. Considering a fully software-defined radio
receiver, it is clear that certain functions exceed the
throughput of even the most powerful general purpose
processor (GPP). Situations where the hardware can greatly
reduce the throughput - such as decimation and despreading-
have obvious benefits. Additionally, many of the latest FEC
codes are computationally intensive, making them untenable
for software-only receivers.

If some latency is acceptable and enough memory exists, it
is possible to implement a multichannel receiver in software
while buffering data and time-sharing the FPGA as necessary
to process the data when necessary. Using an embedded
microprocessor and a memory manager, portions of the
FPGA could be partially reconfigured (similar to a context
switch) to process one channel's data and then reconfigured
to process another channel's data. Because the data can be
buffered during the reconfiguration, the only limitation is the
average throughput of the FPGA, assuming that the memory
is sufficiently deep to avoid any losses during reconfiguration
and buffering. Figure 8 shows a block diagram of such a
system.

CONCLUSIONS

Exploring the usefulness of PR in the field of
software-defined radio has shown both its feasibility and
benefit. Several potential uses were detailed to illustrate how
one might take advantage of this emerging technology.
Resource utilization for a select number of function blocks
were shown along with the required reconfiguration times.
The latest software from Xilinx was found to relieve the user
from the burden of following a complex design methodology
when creating PR designs.

The design time overhead involved when creating a PR
design is acceptable but requires progressing through a slow
learning curve before any results can be obtained. Much of
the necessary support will likely come from the PR
community and not necessarily from the vendor. The full
benefits of PR will not be evident until it becomes
commonplace in industry and the vendors place more
resources on supporting the PR design flow and keeping the
tools and documentation up to date. However, the adaptivity
of PR combined with the desire for software-defined radios
makes a strong argument for pursuing partial reconfiguration.

FXERENCES

[1] Xilinx Virtex-4 Users Guide, www.xilinx.com.

[2] Atmel AT40KAL Users Guide, www.atmel.com.

[3] LatticeXP Family Data Sheet, www.latticesemni.comn.

[4] S. Donthi and R.L. Haggard,
A survey of dynamically reconfigurable FPGA devices,

in Proc. of the 35* Southeastern Symposium on System
Theory, Cookeville, TN, March 16-18, 2003.

[51 D. Mesquita, F. Moraes, J. Palma, L. Mailer and N. Calazans,
Remote and partial reconfiguration of FPGAs: tools and trends,

in Proc. of the International Parallel and Distributed Processing
Symposium, April 22-26, 2003.

[6] Z. Zvonar and J. Mitola,
Software Radio Technologies,

May 2001, Wiley-IEEE Press.

[7] E. Grayver and P. Dafesh,
Multi-modulation programmable transceiver system with
turbo coding,

in Proc. of the IEEE Aerospace Conference,
Big Sky, MT. March 5-12, 2005.

[8] Xilinx Virtex-4 Configuration Guide, www.xilinx.com..

[9] www.turboconcept.com.

[10] P. .lames-Roxby and S.A. Guccione,
Automated extraction of run-time parameterisable cores from
programmable device configurations,

in Proc. of the IEEE Symposium on Field-Programmable
Custom Computing Machines,
Napa Valley, CA, April 17-19, 2000.

[11] E. Horta, J.W. Lockwood, D.E. Taylor and D. Parlour,
Dynamic hardware plugins in an FPGA with partial run-time
reconfiguration,

in Proc. of the Design Automation Conference,

June 10-14,2002. A

IEEE A&E SYSTEMS MAGAZINE, JULY 2008 115

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore. Restrictions apply.

